3GPP TR 32.866 V0.2.0 (2017-05)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;
Study on a RESTful HTTP-based Solution Set (SS)
(Release 14)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
5
2
References
5
3
Definitions, and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4
IRP design principles
6
5
Evaluation of existing Solution Sets
6
6
Alternative Solution Sets
7
6.1
RESTful HTTP-based Solution Set
7
6.1.1
REST API specification in ETSI NFV SOL 17 [x]
7
6.1.1.1
API patterns
7
6.1.1.2
Example specifications
7
6.1.2
RESTCONF Protocol in IETF RFC 8040 [u]
7
6.1.3
Mobile Edge Service APIs in ETSI MEC 009 [z]
7
6.2
xyz Solution Set
7
7
Common principles and design patterns for a RESTful HTTP-based Solution Set
7
7.1
Input material
7
7.2
Short review of REST
8
7.2.1
REST design principles
8
7.2.2
REST implementation levels
8
7.3
Short review of HTTP
8
7.3.1
Message Format
8
7.3.2
HTTP methods
9
7.3.3
HTTP resources
9
7.3.4
Uniform Resource Identifiers (URIs)
9
7.4
Usage of HTTP
10
7.4.1
URI structure
10
7.4.2
Resource identification
11
7.4.3
Usage of HTTP headers and footers
11
7.4.4
Metadata language for the message body
11
7.4.4.1
Data transport language
11
7.4.4.2
Specification language
11
7.4.4.3
Support for Network Resource Models
12
7.5
Design Patterns
12
7.5.1
Design pattern for READ operations
12
7.5.2
Design pattern for UPDATE operations
13
7.5.3
Design pattern for CREATE operations
13
7.5.4
Design pattern for DELETE operations
13
7.5.5
Design pattern for SUBSCRIBE/NOTIFY operations
13
7.5.6
Design pattern for TASK operations
13
7.5.7
Design pattern for scoping and filtering
13
7.6
Example mapping of IRPs
14
7.6.1
Mapping of Network Resource Model (NRM) IRPs to resources
14
7.6.2
Mapping of Interface IRPs to resources
14
Example mapping of the Basic CM IRP
14
Example mapping of the Alarm IRP
15
7.7
Example mapping of solution set
15
7.7.1
Example of defining types
15
7.7.2
Example of defining managed objects
16
7.8
REST SS template
17
8
Recommendations
17
Annex A: About TM Forum REST API specifications
18
A.1
REST API design guidelines
18
A.1.1
General concepts
18
A.1.2
Operations
18
A.1.3
Media types
18
A.2
Example TM Forum REST APIs
19
Annex B: Bibliography
20
Annex C: Change history
21

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
1
Scope

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[x]
ETSI NFV SOL 17
NFVSOL(17)000050r1: "SOL REST API convention collection living document (2017-01-30)".
[y]
ETSI GS NFV SOL 003 V0.6.0 (2017-01): "RESTful protocols specification for the Or-Vnfm Reference Point".

[z]
Draft ETSI GS MEC 009 V0.7.1 (2017-02): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[t]
IETF RFC 6421: "Network Configuration Protocol (NETCONF)" (https://www.ietf.org/rfc/rfc6241.txt).
[u]
IETF RFC 8040: "RESTCONF Protocol" (https://www.ietf.org/rfc/rfc8040.txt).

[a1]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing" (https://www.ietf.org/rfc/rfc7230.txt).
[a2]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (https://www.ietf.org/rfc/rfc7231.txt).
[a3]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax" (https://www.ietf.org/rfc/rfc3986.txt).
[a4]
3GPP TS 32.300: "Name convention for managed objects".

[a5]
ETSI GS NFV SOL 003 (V0.7.0): RESTful protocols specification for the Or-Vnfm Reference Point ".
[a6]
3GPP TS 32.602: "Telecommunication management; Configuration Management (CM); Basic CM Integration Reference Point (IRP); Information Service (IS)".
[a7]
3GPP TS 32.111-2: " Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)".
[v]
OpenAPI Specification Version 2.0
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
3
Definitions, and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

example: text used to clarify abstract rules by applying them literally.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

<ACRONYM>
<Explanation>

4
IRP design principles

5
Evaluation of existing Solution Sets

6
Alternative Solution Sets
6.1
RESTful HTTP-based Solution Set
6.1.1
REST API specification in ETSI NFV SOL 17 [x]

6.1.1.1
API patterns

ETSI NFV SOL 17 [x] collects all agreed REST API conventions to be applied to the SOL REST APIs (SOL002, SOL003 and SOL005 at the time of writing). In clause 5 of this document, the following two patterns are described:

- Subscribe-Notify

- Links

6.1.1.2
Example specifications

IN ETSI NFV ISG, REST API specifications are ongoing, e.g. for the Or-Vnfm reference point (see [y]).

6.1.2
RESTCONF Protocol in IETF RFC 8040 [u]
IETF has specified in RFC 6421 [t] a configuration management protocol (NETCONF). A RESTified version (RESTCONF) is available in RFC 8040 [u].

6.1.3
Mobile Edge Service APIs in ETSI MEC 009 [z]
ETSI ISG MEC 009 [z] defines RESTful mobile edge service APIs. These APIs shall be developed based on common principles and patterns defined in ETSI GS MEC 009 [z]. This document provides a rich source for the development of own guidelines.

6.2
xyz Solution Set

·
·

7
Common principles and design patterns for a RESTful HTTP-based Solution Set

7.1
Input material

As described earlier there are already numerous SDO/fora using RESTful HTTP-based solution sets. SA5 should this material as input for its work and study possible alignment options.

7.2
Short review of REST

7.2.1
REST design principles

7.2.2
REST implementation levels

7.3
Short review of HTTP

7.3.1
Message Format

In RFC 7230 [a1] the general format of a message is given by

HTTP-message = start-line

 *(header-field CRLF)

 CRLF

 [message-body]
with

start-line = request-line / status-line

request-line = method SP request-target SP HTTP-version CRLF
method = token

token = 1*tchar

tchar = "!" / "#" / "$" / "%" / "&" / "’" / "*" / "+" / "-" / "." /

"^" / "_" / "‘" / "|" / "˜" / DIGIT / ALPHA

request-target = origin-form

/ absolute-form

/ authority-form

/ asterisk-form

HTTP-name = %x48.54.54.50 ; HTTP

HTTP-version = HTTP-name "/" DIGIT "." DIGIT

status-line = HTTP-version SP status-code SP reason-phrase CRLF
status-code = 3DIGIT

reason-phrase = *(HTAB / SP / VCHAR / obs-text)
header-field = field-name ":" OWS field-value OWS

field-name = token

field-value = *(field-content / obs-fold)

field-content = field-vchar [1*(SP / HTAB) field-vchar]

field-vchar = VCHAR / obs-text

obs-fold = CRLF 1*(SP / HTAB)

; obsolete line folding

; see Section 3.2.4

message-body = *OCTET

7.3.2
HTTP methods

RFC 7231 [a2] defines eight methods.

GET

Editors’s note: short definition to be added
HEAD

Editors’s note: short definition to be added
POST

Editors’s note: short definition to be added
PUT

Editors’s note: short definition to be added
DELETE

Editors’s note: short definition to be added
CONNECT

Editors’s note: short definition to be added
OPTIONS

Editors’s note: short definition to be added
TRACE

Editors’s note: short definition to be added
RFC 5789 defines the PATCH method

PATCH

Editors’s note: short definition to be added
7.3.3
HTTP resources

HTTP requests act on resources identified by a Uniform Resource Identifier (URI). Resources can be created, read, updated or deleted (CRUD).

7.3.4
Uniform Resource Identifiers (URIs)

URIs are used in HTTP as a means for identifying resources. The generic URI is defined in RFC 3986 [a3] by
URI = scheme ":" hier-part ["?" query] ["#" fragment]

hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty

HTTP uses a subset of the generic URI scheme defined in RFC 7230 [b] as
http-URI = "http:" "//" authority path-abempty ["?" query]

["#" fragment]
where

authority = <authority, see [RFC3986], Section 3.2>

path-abempty = <path-abempty, see [RFC3986], Section 3.3>
query = <query, see [RFC3986], Section 3.4>
fragment = <fragment, see [RFC3986], Section 3.5>

and

authority = [userinfo "@"] host [":" port]
path-abempty = *("/" segment)

query = *(pchar / "/" / "?")
fragment = *(pchar / "/" / "?")
and

segment = *pchar
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "’" / "(" / ")"

/ "*" / "+" / "," / ";" / "="
Example:

foo://example.com:8042/over/there?name=ferret#nose

_/ ______________/_________/ _________/ __/

 | | | | |

scheme authority path query fragment
Editor’s note: It is ffs if a length restriction needs to be introduced for the URI.
7.4
Usage of HTTP
7.4.1
URI structure

The URI should follow a common structure. One possibility is to align with ETSI GS NFV SOL 003 [a5]. In this case the URI without the query component follows the structure

URI = {URI-prefix}/{resourcepath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

Editor’s note: It is ffs if above should be expressed in ABNF.
where

{irpRoot}
indicates the scheme (“http” or “https”), the host name and optional port, and an optional prefix path.
{irpName}
indicates the IRP name
{irpVersion}
indicates the version of the IRP.

Editor’s note: It is ffs, how to map the DN prefix into this scheme.
When comparing this URI scheme to the http-URI you get

http-URI = "http:" "//" host [":" port] path-abempty ["?" query]

 ___________________________/___/ ___/
 | | |
 irpRoot irpName irpVersion
Example:

http://example.com:80/basicCmIRP/V1/...
The optional userinfo component shall not be used.

Editor’s note: The use of the fragment component is ffs
7.4.2
Resource identification

TS 32. 300 [a4] defines the approach for naming a MOI as follows

“ITU-T Recommendation X.500 [2] uses the AttributeType (defined for use as the first component of the AttributeTypeAndValue of a RDN) to identify one attribute of the subject MO for naming purpose. This AttributeType is called the naming attribute to distinguish itself from other attributes that may be present in the MO.”

Based on this definition, the RDN can be defined as

RDN = "/"{namingAttribute} "/" {namingAttributeValue}
and the resource path is the concatenation of RDNs separated by "/".
resourcePath = *("/" RDN)
Example:

…/SubNetwork/south/IRPAgent/5/ManagedElement/Berlin6754/ENBFunction/1
Editor’s note: It is ffs if the namingAttributeValue can be allocated by the HTTP client or is allocated by the HTTP server. In case it is allocated by the HTTP server it is a hexadecimal value. The above example assumes that the value has been allocated by the HTTP client, or more specifically by an operator, since the value carries some semantics.
In this approach, each managed object instance is mapped to a top-level resource. It is also possible to define some sort of container resource for the instantiated NRM.

Editor’s note: The container approach is ffs and needs to be compared with the approach where each MOI is mapped to a top-level resource.
7.4.3
Usage of HTTP headers and footers

7.4.4
Metadata language for the message body

7.4.4.1
Data transport language

There are two commonly-used languages used to transport data in a RESTful message body; JSON and XML.

JSON is optimized for the transport of models, while XML is optimized for the transport of documents.

Because the communication between IRP Manager and IRP Agent is based on information models, JSON is recommended as the data transport language.
7.4.4.2
Specification language

To provide a machine-readable version of an interface specification, 3GPP publishes a Solution Set document which formally describes the schema for each interface. A similar formal schema will be needed for each RESTful interface.

For JSON, there are two parts to this formal description

- The behaviour of the API may be described using the Swagger language, as defined in the OpenAPI specification [v].

- The format of the JSON document may be described by a JSON Schema, as defined in the OpenAPI specification [v].

Swagger descriptions and JSON Schemas may be expressed as either JSON documents or as YAML documents. JSON and YAML are fully interchangeable. It is recommended that YAML should be used in 3GPP documentation because YAML is more human-friendly. Using a human-friendly format may help to reduce errors while writing specifications.
7.4.4.3
Support for Network Resource Models

As part of the Solution Set for an Interface IRP, there must be a description of how the Network Resource Model will be transported on the interface. A placeholder for the Network Resource Model must be created. Figure 7.4.4.3.1 shows an example of how a SOAP Solution Set describes a placeholder (marked in red) for a managed object.

[image: image3]
Figure 7.4.4.3.1: Example of placeholder for Network Resource Model in SOAP Solution Set
In a RESTful interface, it is possible to transport multiple files in a single request. This allows the possibility that the Network Resource Model could be described in a JSON document that is separate from the main body of the request. This has the advantage that the Network Resource Model descriptor could be validated in real time, because it is not embedded as part of another document. Figure 7.4.4.3.2 shows an example of how a JSON Solution Set could describe an external reference (marked in red) for a managed object.

[image: image4]
Figure 7.4.4.3.2: Example of external file for Network Resource Model in JSON Solution Set
7.5
Design Patterns

7.5.1
Design pattern for READ operations

READ operations shall be mapped to the HTTP GET method.
7.5.2
Design pattern for UPDATE operations

WRITE operations shall be mapped to the HTTP PUT or the HTTP PATCH method.
7.5.3
Design pattern for CREATE operations

CREATE operations shall be mapped to the HTTP POST method.

7.5.4
Design pattern for DELETE operations

DELETE operations shall be mapped to the HTTP DELETE method.
7.5.5
Design pattern for SUBSCRIBE/NOTIFY operations

This pattern uses the HTTP POST method. To subscribe to notifications the subscriber sends a POST request to the server indicating – in the message body - the HTTP endpoint to which notifications shall be sent to, and including information about the type of notifications that are subscribed to. Additional filter information may be included in the message body as well.

Subscription requests are sent to a so-called container resource or parent resource. Subscription resources are created below this resource.

To send a notification the server sends a POST request to the client identified by HTTP endpoint address. The actual notification content is included in the message body of the POST request.

Editor’s note: An example should be added
7.5.6
Design pattern for TASK operations

Due to their complexity, some operations cannot be mapped easily into CRUD operations. For these operations task resources are introduced. Reasons for escaping to task operations include

· Editor’s note: Reasons are to be added

Task resources are created below a parent resource to which the task is related to. The tasks are invoked by sending a POST request to the resource. Input parameters can be specified in the message body of the POST request. Output parameters can be returned in the message body of the POST response. The name of the resource should be a verb describing the invoked action

…/foo/doSomething

Task resources are created automatically by the HTTP server once the parent resource is created. The HTTP client does not need to create them.
Editor’s note: It is ffs if another pattern for asynchronous operations is needed.
7.5.7
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource to be selected for filtering. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC3986 [a3] the query component is defined as

query = *(pchar / "/" / "?")

A filter language is not defined. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*
op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"
attrName := string
with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

Editor’s note: It is ffs if this filter language shall be adopted.
The scope can be defined as follows:

…?scopeType={scopeTypeValue}&scopeLevel={scopeLevelValue}

scopeTypeValue = "BASE_ONLY" / "BASE_NTH_LEVEL" / "BASE_SUBTREE" / "BASE_ALL"

scopeLevelValue = *DIGIT
Editor’s note: It is ffs how the information is returned to the client for the case that more than one resource is scoped and passes the filter criteria.
The scope types are defined in TS 32.602 [a6]

7.6
Example mapping of IRPs

7.6.1
Mapping of Network Resource Model (NRM) IRPs to resources

Each Managed Object Instance (MOI) is mapped to a HTTP resource.

7.6.2
Mapping of Interface IRPs to resources

Example mapping of the Basic CM IRP

The Information Service of the Basic CM IRP is defined in 3GPP TS 32.602 [a6] and features the following operations
	IS operation
	Description

	createMO
	Operation allows to create one MOI

	deleteMO
	Operation allows to create one MOI or (through scoping and filtering) multiple MOIs

	setMOAttributes
	Operation allows to set the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getMOAttributes
	Operation allows to read the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getContainment
	Operation to get the containment starting from the specified base object

	cancelOperation
	Operation to cancel an ongoing Basic CM operation

Case 1: The operations relate to one and only one managed object instance (resource)

In this case the resource is identified by the URI. The scope is the base object alone. Filter constraints can be specified in the query component.

In this case the IS operations can be mapped directly into HTTP methods as specified in the following table.

Editor’s note: The mapping of the operations cancelOperation and getContainment is ffs.

	IS operation
	HTTP method

	createMO
	POST

	deleteMO
	DELETE

	setMOAttributes
	PATCH/PUT

	getMOAttributes
	GET

	cancelOperation
	tbc

	getContainment
	tbc

Example: Get all attributes of a resource

Request:

GET …/SubNetwork/south/IRPAgent/5/ManagedElement/6/ENBFunction/Berlin6754
Response:

Returns in the message body the resource instance in JSON.

Case 2: The operations relate to a scope with more than one managed object instance (resource)
This case is ffs.

Example mapping of the Alarm IRP

The Information Service of the Alarm IRP is specified in TS 32.111-2 [a7].
1. Possibility: The IS level operations are mapped to task resources. The parent resource of the task resource is the IS level interface like AlarmIRPOperations_1.

POST …/AlarmIRP/V1/getAlarmList

POST …/AlarmIRP/V1/acknowledgeAlarms

POST …/AlarmIRP/V1/getAlarmCount

POST …/AlarmIRP/V1/unacknowledgeAlarms

POST …/AlarmIRP/V1/setComment

POST …/AlarmIRP/V1/clearAlarms

This approach is consistent with the definition that support IOCs defined on IS level are not visible and accessible except through the input and output parameters of operations. On the other hand, in a design following REST principles, task resources should be avoided.
2. Possibility: In this approach CRUD operations are directly invoked on the support IOCs. This is not compliant to the IS level definitions of support IOCs, but to REST principles.

GET …/AlarmIRP/V1400/AlarmIRP/1/AlarmList/1/getAlarmList

GET …/AlarmIRP/V1400/AlarmIRP/1/AlarmList/1/alarmInformation/23/setComment

Editor’s note: It is ffs if more possibilities exist and what is the best approach.
7.7
Example mapping of solution set

7.7.1
Example of defining types

Figure 7.7.1.1 shows an example of how a common type is defined in a SOAP Solution Set.

[image: image5]
Figure 7.7.1.1: Example of common type definition in SOAP Solution Set
Figure 7.7.1.2 shows how this example may be defined in a JSON Solution Set (expressed in YAML to aid readability).

[image: image6]
Figure 7.7.1.2: Example of common type definition in JSON Solution Set
7.7.2
Example of defining managed objects

Figure 7.7.2.1 shows an example of how a managed object is defined in a SOAP Solution Set.

[image: image7]
Figure 7.7.2.1: Example of managed object definition in SOAP Solution Set
Figure 7.7.2.2 shows how this example may be defined in a JSON Solution Set (expressed in YAML to aid readability).

[image: image8]
Figure 7.7.2.2: Example of managed object definition in JSON Solution Set
7.8
REST SS template

This chapter provides the REST SS template.

8
Recommendations

Annex A: About TM Forum REST API specifications

A.1
REST API design guidelines

This section provides information regarding the development of TM Forum APIs using REST. Documents in Annex X provide recommendations and guidelines for the implementation of Entity CRUD operations and Task operations. They also provide information on filtering and attribute selection. Finally they provide information on supporting notification management in REST based systems.

A.1.1
General concepts

- A Managed Resource is e.g. a database record or a managed entity. Its representation includes fields with values and links to related resources. Client can create, query, update and delete (CRUD) managed resources;

- A Resource Collection is a server managed collection of resources;

- Executable functions are of two kinds:

- CRUD methods

- Tasks.

- REST APIs embrace all aspects of HTTP 1.1, including its requests methods, response codes and message headers.

A.1.2
Operations

	Type of operation
	API operation
	Description

	Query managed entities
	GET Resource
	GET must be used to retrieve a representation of a resource.

	Create managed entity
	POST Resource
	POST must be used to create a new resource

	Partial Update of a managed entity
	PATCH Resource
	PATCH must be used to partially update a resource

	Complete Update of a managed entity
	PUT Resource
	PUT must be used to completely update a resource

	Remove a managed entity
	DELETE Resource
	DELETE must be used to delete a resource

	Execute an Action on a managed entity
	POST on TASK Resource
	POST must be used to execute actions other than CRUD.

A.1.3
Media types

- REST methods may be able to transfer data in XML or JSON; each is represented by its media type

- REST APIs MUST support the JSON media type

- The default for resource representation MUST be JSON

- XML and other formats may optionally be supported via content negotiation between the client and the server.
A.2
Example TM Forum REST APIs

Here below is an non exhaustive list of REST APIs specified by TM Forum:

- Trouble Ticket API

- Customer Management API

- Product Catalog Management API
- Product Inventory Management API
- Performance Management API, etc.
Annex B: Bibliography

TMF 630

TM Forum REST API Design Guidelines Part 1- Practical guidelines for RESTful APIs naming, CRUD, filtering, notifications. Release 14.5.1 – March 2015

TMF 631
TM Forum REST API Design Guidelines Part 2 – Advanced guidelines for RESTful APIs lifecycle management, polymorphism, common tasks. Release 14.5.1 – March 2015

Annex C:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2016-11
	SA5#110
	S5-166218
	
	
	
	Skeleton
	0.0.0

	2017-04
	SA5’112
	S5-171985
	
	
	
	pCRs in S5-171942 and S5-171943 added
	0.1.0

<!-- createMO Request -->

<element name="createMO">

	<complexType>

		<sequence>

			<element name="mOIElementLoc" type="string"/>

			<element name="referenceObjectInstance" type="string" minOccurs="0"/>

			<element name="mO" type="basicCMIRPData:AnyMOType"/>

		</sequence>

	</complexType>

</element>

paths:

/managedObject:

post:

summary: Creates a new managed object.

consumes:

	-	mulitpart/form-data

parameters:

	-	in: formData

				name: createMO

			description: Parameters to create a new managed object.

			schema:

			type: object

			properties:

				mOIElementLoc:

					type: string

					required: true

				referenceObjectInstance:

					type: string

	-	in: formData

				name: managedObject

				type: file

			description: JSON document to describe managed object.

			x-mimetype: application/json

			required: true

		responses:

			200:

				description: OK

<complexType name="longList">

 <sequence>

 <element name="em" type="long" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

</complexType>

definitions:

longList:

	type: array

	items:

		type: integer

 format: int64

<element

 name="MscServerFunction"

 substitutionGroup="xn:ManagedElementOptionallyContainedNrmClass"

>

 <complexType>

 <complexContent>

 <extension base="xn:NrmClass">

 <sequence>

 <element name="attributes" minOccurs="0">

 <complexType>

 <all>

 <element name="userLabel" type="string"/>

 <element name="mccList" type="cn:longList"/>

 <element name="mncList" type="cn:longList"/>

 <element name="lacList" type="cn:longList"/>

 <element name="sacList" type="cn:longList"/>

 <element name="gcaList" type="cn:longList" minOccurs="0"/>

 <element name="mscId" type="long"/>

 <element name="mscServerFunctionGsmCell" type="xn:dnList"/>

 <element name="mscServerFunctionExternalGsmCell" type="xn:dnList"/>

 <element name="mscServerFunctionCsMgwFunction" type="xn:dnList"/>

 <element name="nriList" type="cn:longList"/>

 <element name="mscServerFunctionMscPool" type="xn:dnList" minOccurs="0"/>

 <element name="defaultMsc" type="cn:defaultMscType" minOccurs="0"/>

 </all>

 </complexType>

 </element>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="cn:IucsLink"/>

 <element ref="cn:ALink"/>

 <element ref="xn:VsDataContainer"/>

 </choice>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

$schema: http://json-schema.org/draft-04/schema#

description: "MscServerFunction"

type: object

properties:

 attributes:

 type: object

 required:

 - mccList

 - mncList

 - lacList

 - sacList

 - mscId

 - mscServerFunctionGsmCell

 - mscServerFunctionExternalGsmCell

 - mscServerFunctionCsMgwFunction

 - nriList

 properties:

 userLabel:

 type: string

 mccList:

 $ref: "#/definitions/longList"

 mncList:

 $ref: "#/definitions/longList"

 lacList:

 $ref: "#/definitions/longList"

 sacList:

 $ref: "#/definitions/longList"

 gcaList:

 $ref: "#/definitions/longList"

 mscId:

 type: integer

 mscServerFunctionGsmCell:

 $ref: "#/definitions/dnList"

 mscServerFunctionExternalGsmCell:

 $ref: "#/definitions/dnList"

 mscServerFunctionCsMgwFunction:

 $ref: "#/definitions/dnList"

 nriList:

 $ref: "#/definitions/longList"

 mscServerFunctionMscPool:

 $ref: "#/definitions/dnList"

 defaultMsc:

 $ref: "#/definitions/defaultMscType"

 IucsLinks:

 $ref: "#/definitions/IucsLinkList"

 ALinks:

 $ref: "#/definitions/ALinkList"

 VsDataContainer:

 $ref: "#/definitions/VsDataContainer"

